Mathematics - II (3110015) MCQs

MCQs of Fourier Integral

Showing 1 to 10 out of 21 Questions
1.
The Fourier Integral is useful for
(a) Periodic Function
(b) Non-Periodic Function
(c) Logarithmic Function
(d) Discontinuous Function
Answer:

Option (b)

2.
The Fourier integral formula is decomposition of
(a) periodic function into non-periodic function
(b) non-periodic function into periodic function
(c) non-periodic function into harmonic function
(d) harmonic function into periodic function
Answer:

Option (c)

3.
If fx=π2, 0<x<π0   , x>π, then Bω=
(a) 1-cosωππ
(b) 1- cosωπω
(c) π2- cosωπω
(d) 1+cosωπω
Answer:

Option (a)

4.
The Fourier integral of fx=2, x<20, x>2 is
(a) 04sin2ωπω·cosωx 
(b) 04sin2ωπω·cosωx dx
(c) -  4sin2ωπω·cosωx 
(d) -sin2ωπω·cosωx dx
Answer:

Option (a)

5.
If Aω is zero, then given function is
(a) even
(b) odd
(c) neither even nor odd
(d) Both (A) & (B)
Answer:

Option (b)

6.
If Bω is zero, then given function is
(a) even
(b) odd
(c) neither even nor odd
(d) Both (A) & (B)
Answer:

Option (a)

7.
Fourier cosine integral of fx is
(a) 0 Aω·cosωx 
(b) 0 Bω·sinωx 
(c) -  Aω·cosωx 
(d) -  Bω·cosωx 
Answer:

Option (a)

8.
Fourier sine integral of fx is
(a) 0 Aω·cosωx 
(b) 0 Bω·sinωx 
(c) -  Aω·cosωx 
(d) -  Bω·cosωx 
Answer:

Option (b)

9.
If fx is an even function, then Fourier integral of fx reduces to
(a) cosine integral
(b) sine integral
(c) complex integral
(d) even integral
Answer:

Option (a)

10.
If fx is odd function, then Fourier integral of fx reduces to
(a) Cosine integral
(b) Sine integral
(c) Complex integral
(d) Even odd integral
Answer:

Option (b)

Showing 1 to 10 out of 21 Questions