Mathematics - I (3110014) MCQs

MCQs of Partial Derivatives

Showing 21 to 30 out of 43 Questions
21.

The sum of the squares of two positive numbers is 200 then their minimum product is 

(a)

200

(b)

257

(c)

28

(d)

none of these

Answer:

Option (d)

22.

If f(x,y)=y sin(xy) then the value of fx(π,1) is _____.

(a)

0

(b)

1

(c)

-1

(d)

2.5

Answer:

Option (c)

23.

The value of lim(x,y)(0,0) x2-xyx-y is _____.

(a)

1

(b)

0

(c)

-1

(d)

does not exist

Answer:

Option (b)

24.

A point a,b is said to be a saddle point of f(x, y), if at a,b

(a)

rt-s2>0

(b)

rt-s2 = 0

(c)

rt-s2<0

(d)

rt-s2  0

Answer:

Option (c)

25.

lim(x,y)(0,0)x2-yxx+y= _____.

(a)

2

(b)

1

(c)

0

(d)

-1

Answer:

Option (c)

26.

The equation of tangent plane of surface z = x at point (2,0,2) is _____.

(a)

z=x

(b)

x+y+z=2

(c)

x+z=0

(d)

none of these

Answer:

Option (a)

27.

The value of the limit lim(x, y)(0, 0)2x2y x4+y2  is _____.

(a)

0

(b)

1

(c)

2

(d)

not exist

Answer:

Option (d)

28.

The equation of the tangent plane to the surface 2x2+y2+2z=3 at point (2,1,-3) is _____.

(a)

4x+y-z=-6

(b)

x+4y-z=6

(c)

4x+y+z=6

(d)

x+y+4z=6

Answer:

Option (c)

29.

Conditions for f(x,y) to have a maximum values are _____.

(a)

fx=0=fy, rt<s2, r<0

(b)

fx=0=fy, rt>s2, r<0

(c)

fx=0=fy, rt>s2, r>0

(d)

fx=0=fy, rt=s2, r>0

Answer:

Option (b)

30.

The function x2+y2-6x+10 has minimum value at point _____.

(a)

(3,0)

(b)

(3,3)

(c)

(-3,0)

(d)

(-3,-3)

Answer:

Option (a)

Showing 21 to 30 out of 43 Questions