Mathematics - II (3110015) MCQs

MCQs of Vector Calculus

Showing 41 to 50 out of 79 Questions
41.
Let r=xt,yt,zt be the position vector on a curve C in space at any point t. Then the arc length of curve C form point a to b is L =
(a) abr't dt
(b) abr't2 dt
(c) abrt dt
(d) abr't dt
Answer:

Option (d)

42.
The arc length of curve of the portion of circular helix r=costi^+sintj^+tk^ from t=0 to t=π is
(a) 2π
(b) -2π
(c) 2π
(d) 2π
Answer:

Option (c)

43.
The length of the astroid x=acosθ3, y=asinθ3 in the first quadrant is
(a) 0
(b) 34a
(c) 3a
(d) 32a
Answer:

Option (d)

44.
Consider the curve y=fx, then the arc length from x=a to x=b can be expressed as
(a) ab1+dydxdx
(b) ab1-dydx2dx
(c) ab1+dydx2dx
(d) ab1+dydx2dx
Answer:

Option (c)

45.
The length of the curve y=logsecx from x=0 to x=π3 is
(a) log2+3
(b) log2-3
(c) log2+13
(d) log2-13
Answer:

Option (a)

46.
Consider the curve r=fθ, then the arc length from θ=θ1 to θ2 can be expressed as
(a) θ1θ21+drdθ
(b) θ1θ2r2+drdθ2
(c) θ1θ2r2+drdθ  
(d) θ1θ21+drdθ2
Answer:

Option (b)

47.
The length of the spiral r=e2θ from θ=0 to θ=2π
(a) 52e4π
(b) 52e4π-1
(c) 52e4π
(d) 52e4π-1
Answer:

Option (b)

48.
Any integral which is to be evaluated along a curve is called
(a) Double integral
(b) Triple integral
(c) Line integral
(d) Solenoidal
Answer:

Option (c)

49.
Let C:r=xti^+ytj^+ztk^ be an oriented curve. Then the line integration of scalar function f(x,y,x) along the curve C from point a to b is defined as
(a) t=at=bfxt,yt,zt·rt dt
(b) t=at=bfxt,yt,zt· r't dt
(c) t=at=bfxt,yt,zt·r't dt
(d) t=at=bfxt,yt,zt·rt dt
Answer:

Option (c)

50.
Let C be the straight line joining the points A0,0,0 to B1,1,1. Then the line integration of fx,y,z=x2+y2+z2 over the curve C is
(a) 33
(b) 3
(c) 0
(d) -33
Answer:

Option (b)

Showing 41 to 50 out of 79 Questions