Mathematics - II (3110015) MCQs

MCQs of Fourier Integral

Showing 11 to 20 out of 21 Questions
11.
The Fourier integral of fx is represented as
(a) f(x)=-[ A(λ) cosλx+B(λ) sinλx ] ; x
(b) f(x)=0[ A(λ) cosλx+B(λ) sinλx ] ; x
(c) f(x)=0L[ Aλ cosλx+Bλ sinλx ] ; x
(d) f(x)=1L-[ A(λ) cosλx+B(λ) sinλx ] ; x
Answer:

Option (b)

12.
The integral of fx=2π00fusinλucosλudu0dx is called ______.
(a) Fourier integral
(b) Fourier sine integral
(c) Fourier cosine integral
(d) None of these
Answer:

Option (c)

13.
The integral of f(x)=0Bω sinωx  is a fourier sine integral, then Bω is ________.
(a) 0ft sinωt dt
(b) 1π0ft sinωt dt
(c) 2π0ft sinωt dt
(d) 3π0ft sinωt dt
Answer:

Option (c)

14.
The integral of fx=1π0-ft cost-x dt  is called __________ .
(a) Fourier integral
(b) Fourier sine integral
(c) Fourier cosine integral
(d) None of these
Answer:

Option (a)

15.
Fourier sine integral of fx=e-kx, x>0, k>0 is ______.
(a) 1π0ksinωxk2+ω2
(b) 1π0ωsinωxk2+ω2
(c) 2π0ωsinωxk2+ω2
(d) 2π0ksinωxk2+ω2
Answer:

Option (c)

16.
Find Fourier cosine integral of fx=e-2bx ,x>0, b>0
(a) 2bπ0cos ωx4b2+ω2
(b) 4π0cos ωx4b2+ω2
(c) -4bπ0cos ωx4b2+ω2
(d) 4bπ0cos ωx4b2+ω2
Answer:

Option (d)

17.
Fourier integral of the function fx= 0,x<0e-x,x>0 is given by fx=0Aωcosωx+Bωsinωx, then Aω= _________ .
(a) 1π11+ω
(b) 1πω1+ω
(c) 1π11-ω2
(d) 1π11+ω2
Answer:

Option (d)

18.
Let fx=e-x, x>00, x<0. If Fourier integral of the function is fx=0Aωcosωx+Bωsinωx , then Bω is ________ .
(a) 1π(1+ω2)
(b) ωπ(1+ω2)
(c) ω1+ω2
(d) 11+ω2
Answer:

Option (b)

19.
If fx=0, 0<x<11, 1<x<20, 0<x>2, then find Fourier sine integral.
(a) 02πωcos ω-cos 2ω·sinωx 
(b) 01πωcos ω-cos 2ω·sinωx 
(c) 02πωcos 2ω-cos ω·sinωx 
(d) 01πω2cos ω-cos 2ω·sinωx 
Answer:

Option (a)

20.
Using Fourier cosine integral of the function fx=e-3x, x>0, find the value of 0cos ω9+ω2.
(a) π6e-6
(b) π2e-3
(c) π6e-3
(d) 0
Answer:

Option (c)

Showing 11 to 20 out of 21 Questions