Mathematics - II (3110015) MCQs

MCQs of Series Solutions of ODEs and Special Functions

Showing 11 to 20 out of 40 Questions
11.
The polynomial 2x2-4x+3 in terms of Legendre’s polynomial is ......
(a) 13(4P2-4P1+11P0)
(b) 13(4P2+12P1+11P0)
(c) 13(P2-12P1+11P0)
(d) 13(4P2-12P1+11P0)
Answer:

Option (d)

12.
The Rodrigues' formula for Legendre's polynomial of degree n is Pn(x)=mdndxn(x2-1)n. Then m is .....
(a) n!2n
(b) 2nn!
(c) 12nn!
(d) 12n(n!)2
Answer:

Option (c)

13.
The generating function of the Legendre’s polynomial is n=0Pn(x)·tn= ..........
(a) 1t2+2xt+1; x<1, t<1
(b) 1t2-2xt+1; x<1, t<1
(c) 1t2+2xt-1; x<0, t<1
(d) -1t2+2xt+1; x<1, t<1
Answer:

Option (b)

14.
The value of Pn(-1)= .....
(a) (-1)n
(b) 1
(c) 0
(d) -1
Answer:

Option (a)

15.
Let P0, P1 and P2 be the Legendre’s polynomials of order 0,1 and 2 respectively. Which of the following statement is correct?
(a) P2(x)=3xP1(x)+12P0(x)
(b) P2(x)=32xP1(x)-12P0(x)
(c) P2(x)=12xP1(x)+32P0(x)
(d) P2(x)=3xP1(x)-12P0(x)
Answer:

Option (b)

16.
Let the Legendre's polynomial P4(x)=λ(-x4+3035x2-335). Then λ= .....
(a) -352
(b) 358
(c) 354
(d) -358
Answer:

Option (d)

17.
The Bessel's function of the first kind of order n is denoted by Jn(x) and defined as .....
(a) k=0(-1)kk! Γ(n+1+k)x2n-2k
(b) k=0(-1)kk! Γ(n+k)x2n+2k
(c) k=0(-1)kk! Γ(n+1+k)x2n+2k
(d) k=0(-1)k Γ(n+1+k)x2n+2k
Answer:

Option (c)

18.
Which of the following property is correct for Jn(x) ?
(a) ddx(xnJn(x))=xnJn-1(x)
(b) ddx(xn+1Jn(x))=xnJn-1(x)
(c) ddx(xnJn(x))=xnJn+1(x)
(d) ddx(xnJn-1(x))=xnJn-1(x)
Answer:

Option (a)

19.
J-1 2(x)= .....
(a) 2πxsinx
(b) 2πx(sinxx-cosx)
(c) -2πx(cosxx+sinx)
(d) 2πxcosx
Answer:

Option (d)

20.
Which of the following relation is correct for Jn(x) ?
(a) Jn+1(x)+Jn-1(x)=-2nxJn(x)
(b) Jn+1(x)-Jn-1(x)=2nxJn(x)
(c) Jn+1(x)+Jn-1(x)=2nxJn(x)
(d) Jn+1(x)+Jn-1(x)=2nxJn-1(x)
Answer:

Option (c)

Showing 11 to 20 out of 40 Questions