11. |
The Fourier integral of is represented as
|
||||||||
Answer:
Option (b) |
12. |
The integral of is called ______.
|
||||||||
Answer:
Option (c) |
13. |
The integral of is a fourier sine integral, then is ________.
|
||||||||
Answer:
Option (c) |
14. |
The integral of is called __________ .
|
||||||||
Answer:
Option (a) |
15. |
Fourier sine integral of is ______.
|
||||||||
Answer:
Option (c) |
16. |
Find Fourier cosine integral of
|
||||||||
Answer:
Option (d) |
17. |
Fourier integral of the function is given by , then _________ .
|
||||||||
Answer:
Option (d) |
18. |
Let . If Fourier integral of the function is , then is ________ .
|
||||||||
Answer:
Option (b) |
19. |
If , then find Fourier sine integral.
|
||||||||
Answer:
Option (a) |
20. |
Using Fourier cosine integral of the function , find the value of .
|
||||||||
Answer:
Option (c) |